
1

Hobbes: CVS for Shared Memory

Derek R. Hower and Mark D. Hill
University of Wisconsin-Madison

Department of Computer Sciences

1210 W Dayton St

Madison, WI 53706

{drh5, markhill}@cs.wisc.edu

Abstract
We observe that many research proposals for

enhanced multicore programmability share a common

mechanism, namely, they limit how and when values in

a shared memory program are updated. In this paper

we present Hobbes, a generic mechanism to control

shared memory updates that takes inspiration from

software revision control systems like CVS. We show

that two simple primitives, checkout and checkin, can

be used to simplify programming and debugging, build

deterministic software, and enable deterministic replay.

Our preliminary evaluation indicates that the Hobbes

programming model fits with many program’s existing

data sharing patterns and has the potential to support

new, more intuitive patterns.

1 Introduction

Many of the research proposals introduced since

the dawn of the multicore era that aim to make shared

memory programming easier share a common

mechanism. All in some way limit how and when

values in a shared memory program are updated, and

effectively reduce the potential to unexpectedly share

data (e.g., through a data race). Deterministic hardware

systems like DMP [12] and Calvin [17] delay update

propagation until deterministic events occur. Languages

such as X10 [11] and DPJ [7] constrain how memory

from differing regions can communicate. Systems

extensions like Grace [4] and Determinator [2] hide

updated values from other threads until an explicit

update event occurs. Many other examples exist in both

hardware and software [1,10,16,20,23,24].

Given the above observation about the trends in

multiprocessor programmability research, we aim to

develop a generic framework for controlling how and

when updates in a shared memory programming

environment occur. We hope that if designed correctly,

such a framework could be used to achieve the specific

goals of all the proposals listed above using a single

mechanism. Such a unified mechanism could

simultaneously give hardware designers a single

operation to optimize and software tools a single

primitive to use.

Rather than reinvent the wheel, we take inspiration

from a concurrency management abstraction most

programmers are already familiar with: software

revision control systems. Development teams have been

successfully using revision control systems for well

over two decades, and the model has proven to be

simple enough to understand yet powerful enough to

enable complex interactions. And importantly, like the

proposals for shared memory above, revision control

systems operate by limiting how and when updates are

published.

In this paper we propose Hobbes, a software

abstraction that takes inspiration from the CVS

concurrency model [15]. Hobbes gives programmers

the ability to checkout and checkin shared memory on a

per-thread basis, much in the same way that revision

control systems enable file checkout and checkin on a

per-user basis.

We show that the Hobbes model can be used as a

foundation to develop mechanisms that achieve a

variety of features previously proposed for

multiprocessor systems. In particular, Hobbes can be

used to constrain a multithreaded program’s

interleaving, enable multithreaded deterministic replay,

and allow for multithreaded deterministic execution.

These are in addition to other benefits of the Hobbes

model such as improved code readability and the ability

to manage shared memory in new and intuitive ways.

And importantly, Hobbes can achieve those goals with

a single mechanism.

We discuss Hobbes here largely without regard to

implementation considerations, and focus specifically

on the merits and limitations of the model. Our current

and future work, some of which is discussed below,

will focus on how the model can be efficiently

implemented in both conventional and specialized

hardware.

We also discuss our experiences using an early

prototype of Hobbes that can be used as a software

library. We find

 that existing programs written for shared memory

systems are already written in a way compatible with

the checkout/checkin operations, at the very least

showing that the operations are reasonable

abstractions;

2

 that the checkout/checkin mechanisms are sufficient

to implement multiprocessor determinism strategies

previously proposed;

 the checkout/checkin mechanisms can be used by

programmers to reason about multiprocessor

communication;

In the following sections we will first outline the

details of our current working definition of the Hobbes

model. Then we will discuss how the Hobbes model

can be used in a variety of ways to help programmers

deal with multiprocessor machines, including by

controlling and/or eliminating nondeterminism. We will

also briefly discuss our experiences with Hobbes-U, a

working prototype. Finally, we will outline our plans to

investigate the Hobbes model further.

2 Hobbes Model

The Hobbes framework is used by threads in an

application to manage data sharing through memory.

When using Hobbes, all communication through shared

memory is explicit and is controlled through an

interface described below. This is in contrast to

conventional shared memory in which threads may

communicate between any two memory references.

Memory is managed by Hobbes through the use of

four main abstractions borrowed from CVS, namely

modules, working copies, repositories and

checkout/checkin operations. Though all four

abstractions share a likeness to their counterparts in

CVS, several differences exist that make them unique

to shared memory programming.

2.1 Memory Repositories
Every Hobbes application contains exactly one

memory repository, which in turn contains zero or more

modules. Threads communicate by pushing/pulling

updates to/from modules contained in the repository.

2.2 Modules
Modules are abstractions use to group related

addresses together in an indivisible unit. A module

consists of one or more contiguous ranges of addresses

in a process address space. Ranges cannot overlap and

an address may belong to at most one module. Any

address that is not defined by a module is considered

private; threads are guaranteed that any update made to

such an address will not be seen by other threads,

similarly to an address in a forked process.

Modules serve as the basis of sharing in Hobbes. In

particular, threads communicate by passing different

versions of modules between their working copies and

the repository.

2.3 Working Copies
A working copy is a thread’s private representation

of a module. Threads can be assured that any memory

value in the working copy will not change

spontaneously due to another thread’s update as they

could in conventional shared memory. Likewise, a

thread can modify locations in a working copy at will

with the assurance that other threads in the same

process will not prematurely see those updates.

Working copies in Hobbes differ from those in

CVS in at least one notable way. A Hobbes working

copy cannot reflect any previous version in the history

of a module as can a working copy in CVS.

Programmers using CVS have access to different

versions of project that they can use to track down

bugs, revive dead code, and/or develop an

understanding of the evolution of a project. While this

model is useful for human programmers, threads in a

shared memory program are not generally interested in

finding and/or correcting work committed in the past,

and so we chose to limit what Hobbes working copies

can reflect. In particular, working copies in Hobbes

always reflect the most recent version of a module at

the time of the last checkout operation. In CVS

terminology, this is analogous to a working copy that

always points to the HEAD revision.

Address Space Layouts

The module/repository abstraction allows for many

different address space layouts. Here, we discuss a few

layouts that may be common in Hobbes applications and

attempt to provide intuition on why the Hobbes model

allows programmers to more effectively manage shared

memory.

One of the simplest layouts uses a single module that

contains the entire heap. In this layout, threads can share

information through values on the heap but cannot

communicate through the stack. This layout has the

benefit of matching up with common intuition on how

programs communicate, but may be overly inclusive as

typically not all addresses on the heap are intended to be

shared.

A modification of the entire-heap layout would be to use

a single module strictly for shared heap allocations. This

layout would require a modified memory allocator

capable of distinguishing between a private or shared

allocation (e.g., with pmalloc and smalloc). Using a

separate module for private allocations could help

prevent heisenbugs that occur from inadvertent sharing in

private memory regions and, depending on

implementation details, could result in performance

benefits since the Hobbes system has fewer memory

locations to track.

Other layouts could take advantage of multiple modules

within the same application. For example, an application

could use one module for the shared data of each subtask

in an application.

3

2.4 Checkout/Checkin
In the Hobbes model, threads can only

communicate through memory by moving data between

their respective working copies and the encompassing

repository. Two operations, checkout and checkin, are

used for this purpose. A checkout operation atomically

pulls the most recent version of a module into a thread’s

working copy. Similarly, a checkin operation

atomically pushes any changes made in a working copy

back to the repository.

Checkout and checkin operations are totally

ordered over the course of execution. That order is used

to determine what version of a module at the repository

a thread should see. Upon a checkout, a thread will see

all updates from checkins that occurred before the

checkout and none that occurred after.

2.4.1 Patches

The use of checkout and checkin operations create

logical patches during execution. A patch consists of all

updates made to a working copy since the last checkout.

The checkin operation applies the current patch to the

repository. Because corresponding checkout and

checkin operations do not have to be consecutive in the

total order of operations, patches are partially ordered

during an execution. As a result, it is possible for a

conflict to occur between concurrent patches.

2.4.2 Conflicts and Merging

A conflict occurs when two concurrent patches

have overlapping updates. When a conflict occurs, it

must somehow be resolved, and in Hobbes many

possibilities exist. Below we will discuss two of these

possibilities, though many more could be applied. We

envision that future Hobbes systems may even allow

programs to dynamically choose a conflict resolution

policy.

One of the simplest, yet still useful, policies is a

last-writer-wins scheme. Under this policy, conflicting

updates blindly clobber old values as determined by the

checkin order. For example, if two concurrent patches

both update an address A, only the value from the patch

with the oldest checkin time will survive in the

repository. In our experience using Hobbes so far, we

find that under most situations the clobbered update is

either tolerable (accounted for in the algorithm’s

design) or is an obvious indication of a bug. In the later

case, it may be beneficial for a Hobbes system to

provide an error notification, e.g., via an exception,

when a conflict occurs.

Another possibility for resolving conflicts is to use

a user-controlled resolution function, similar to a

manual merge in CVS. Here, the user (program) can

dynamically choose what to do when a conflict occurs,

presumably through a callback function. This resolution

policy is particularly interesting in its possibility to

enable, for example, lock-free data structures through

undo actions. Unfortunately, we have not yet evaluated

this policy though hold high hopes for its utility.

3 Uses

Below we will discuss how a Hobbes framework

can be used to achieve a variety of research goals,

including deterministic execution, easier debugging,

and support for hard to implement algorithms. Other

possibilities may exist, such as supporting a software

transactional memory implementation, but are not

discussed here.

3.1 Code Annotation
Because the checkout/checkin mechanisms

explicitly identify when threads communicate, they can

serve as visual cues in the source code that state a

programmer’s intention. This can be especially helpful

in large projects where more than one programmer

works on the same software module. Unlike disciplined

software engineering practices that have attempted to

address this very problem (e.g., shared variable naming

conventions), Hobbes forces, rather than suggests, the

source code to be self-documenting, potentially leading

to more readable and usable source code even in the

face of shaky engineering practices.

Additionally, because of the self-documenting

features of Hobbes, multithreaded debugging may be

simplified. In particular, when debugging an application

a programmer can be assured that if she observes a bug

in a region of code that does not contain a checkout or

checkin, that that bug is due to a local (i.e., single

threaded) error.

One major obstacle to Hobbes’ use as a code

annotator is software composability. When

checkout/checkin operations are hidden in a function

call programmers may not be aware that

communication is occurring. Hobbes could benefit from

solutions to similar composability problems previously

proposed, such as Java’s insistence on listing throwable

exceptions at a function’s declaration.

3.2 Interleave Constrained Execution
A program that uses Hobbes can only communicate

at checkout/checkin operations. This is in contrast to

conventional shared memory programs that can

potentially communicate between any two memory

accesses. The reduced possibility for communication

results in exponentially fewer potential thread

interleavings, and consequently a program that is easier

to develop, test, verify, and maintain. Once a program

is verified using Hobbes, developers can have a higher

confidence that released software will be free of

4

concurrency errors, potentially saving millions of

dollars a year in development and support costs.

3.3 Deterministic Replay
While simply using Hobbes goes a long way

towards making multithreaded executions more

predictable, the resulting executions can still be

nondeterministic. Sometimes this nondeterminism is

even intentional, e.g. when designing a load balancing

work queue [6]. However, even when nondeterminism

is desired for algorithmic purposes there are times when

replicating a previous interleaving can be helpful.

Deterministic replay allows debuggers to hone in on

rarely occurring bugs [27], enables software replication

of multithreaded programs [8], gives security analysts

insights into obscure attacks [13], and can even be

useful to for application-specific tasks such as database

queries [25]. Unlike many existing proposals to enable

multithreaded deterministic replay [18,19,21,22,27],

Hobbes can be used to build a replay system without

requiring replay-specific hardware (though still taking

advantage of any hardware acceleration present for

Hobbes), as described below.

Recording the memory interleaving order, which is

a key component of any multiprocessor deterministic

replay mechanism, in Hobbes is nearly trivial. It

requires only that the order of checkout/checkin

operations are recorded. Replay is only slightly more

complicated, and consists of a system capable of

enforcing a predetermined checkout/checkin order (and,

of course, a mechanism for replaying inputs). A

Hobbes-based deterministic replay mechanism would

be lightweight enough that it could be used online in

production systems to collect detailed bug reports on

concurrency errors or to forward ordering information

to replica processes for fault tolerance [8].

3.4 Deterministic Execution
While deterministic replay can be helpful, in many

cases it may not be needed. Many parallel algorithms

can efficiently be made deterministic with a Hobbes

system, making the need to record a thread interleaving

unnecessary. Eliminating the recording step can reduce

bandwidth requirements in a software replication

scheme or increase testing confidence in multithreaded

programs to be on-par with that of single-threaded

applications.

At the very least, Hobbes can be used as a

mechanism to implement deterministic execution in a

manner similar to current state-of-the-art [3,12,17].

Most current systems achieve determinism by

stratifying (or quantizing) a multithreaded execution.

After partitioning execution into a series of global

strata, these systems ensure that threads communicate

only at strata boundaries and do so in a deterministic

order. Hobbes can be used to implement these systems

by using an ordered barrier operation that, in addition to

performing like a conventional barrier, also ensures that

threads entering/leaving the barrier logically

checkin/checkout in a deterministic order.

Programmers could manually insert calls to the

ordered barrier to make their application deterministic.

Alternatively, it is conceivable that a special runtime

system could be constructed that transparently inserts

ordered barriers during execution, making existing

programs deterministic without modification.

In addition to being a mechanism for implementing

the current state of the art in deterministic execution,

Hobbes also has the potential to improve the state of the

art in at least two ways. Both approaches attempt to

tackle the problem of load imbalance that is one of the

major performance limiters in strata-based systems

[3,12,17].

First, Hobbes exposes the mechanism for achieving

determinism (i.e., the ordered barrier) to the

programmer. This presents the opportunity for high-

level information about a program to be taken into

consideration when creating strata and may prevent

situations where strata are created at inopportune times,

such as during periods where threads are not

communicating. Current systems that create strata

without any high level program information are not able

to avoid these performance pitfalls.

Second, Hobbes allows programmers to use more

precise instruments than barriers for controlling

determinism. Generally, as long as the order of

checkout/checkin operations is controlled in a

repeatable way, then a deterministic execution results.

This gives programmers the opportunity to encode a

deterministic schedule that corresponds to the actual

communication patterns of an application, which may

not follow the barrier model. This gives programmers

the flexibility to design complex deterministic programs

without needlessly sacrificing performance due to a

communication pattern mismatch.

4 Hobbes-U

Hobbes-U is the first prototype of a Hobbes model

implementation. It is implemented entirely as a

userspace library for C and C++. Hobbes-U is not

particularly efficient or fast, but serves a key purpose

by allowing software development with the Hobbes

model to proceed. Hobbes-U also allows us to collect

key statistics on program usage that will motivate future

improvements in a Hobbes implementation. Hobbes-U

was designed for functionality, not efficiency, and has a

steep performance cost.

5

Table 1 – Hobbes-U Interface

int hobbes_prepare()

void hobbes_finish()

hobbest_module_t create_module()

void* smalloc(size_t len, hobbes_module_t m)

int mcheckin(hobbes_module_t m)

int mcheckout(hobbes_module_t m)

void ordered_barrier(pthread_barrier_t b,

hobbes_module_t m)

Threads in Hobbes-U manage memory using the

interface shown in Table 1. Before using any Hobbes

abstractions, a program must first make a call to

hobbes_prepare(), which initializes hidden

library state. Users can manage modules through the

combined use of create_module() and

smalloc(…). create_module() initializes a new,

empty and module in a thread’s working copy and

return a handle to it. Subsequent calls to

smalloc(..) that use that handle add memory

regions to the module. mcheckout(…) and

mcheckin(…) are used to pull or push, respectively

modules from a working copy to the repository. Finally,

the Hobbes-U interface also includes a special ordered

barrier synchronization operation so that deterministic

programs can be written.

Additionally, Hobbes-U serves as a drop-in

replacement for the pthread library, enabling existing

pthread software to use Hobbes memory management

without substantial (if any) modification. The Hobbes

implementation of pthread library calls includes

implicit checkout/checkin operations when

communication is expected (e.g., at barrier_wait).

Hobbes-U utilizes existing virtual memory

mechanisms and performs all operations under the hood

at the page level. This is transparent to the user,

however, who can still create and operate on modules

of arbitrary size. Many techniques used by Hobbes-U

have been borrowed from other systems that manage

shared memory through paging mechanisms, such as

Grace, Determinator, and various software DSM

systems [23]. For this reason and space considerations

we omit further details of the Hobbes-U design.

5 Preliminary Evaluation

Our preliminary evaluation of Hobbes-U is focused

on the usability of the Hobbes model, and we purposely

omit any performance evaluation at this time.

Specifically, our evaluation seeks to determine if the

Hobbes model a) is general enough to support a variety

of programs, b) matches with programmer’s existing

intuition on how to manage share memory, and c)

enables new, more organized and/or modular ways to

manage shared memory.

To answer these questions, we used the Hobbes-U

prototype to develop a suite of applications that include

workloads from the popular PARSEC benchmark suite

[5] as well as custom from-scratch implementations of

well known algorithms like ocean and barnes-hut. We

modified the applications from PARSEC as little as

possible, and use them to test Hobbes’ compatibility

with existing techniques for managing shared memory.

Our custom workloads take a different approach and are

used to gain experience writing programs specifically

for the Hobbes model.

5.1 Qualitative Findings
Of the six PARSEC workloads we tested, three of

them worked by simply linking to Hobbes-U rather than

pthreads. Of the remaining, two workloads only

required small modifications, usually to eliminate any

data sharing on the stack, which our Hobbes-U

implementation does not support. We only needed to

insert an explicit checkout/checkin in one instance in

order to correctly synchronize a flag variable that was

not protected with pthread library calls.

These findings indicate that the Hobbes model at

the very least is compatible with current memory shared

memory management strategies. Combined with the

extra benefits like easier debugging and determinism,

we believe that Hobbes has potential even if the

checkout/checkin operations aren’t used in “new” ways.

6 Related Work

Hobbes has many similarities to recently proposed

work on parallel programming models. In general,

Hobbes is distinguished from these prior proposals by

1) the flexibility the Hobbes model allows, and 2)

Hobbes’ independence from any specific programming

language.

Several recent programming models for

determinism, including Revsions [9], Worlds [26], Cilk

Hyperobjects [14], Determinator [2], and Grace [4], use

revision control systems for inspiration. Each of these

proposals uses a fork/join parallelism model where

threads can only communicate directly with their

parent. The Hobbes model, on the other hand, is not

limited strictly to a fork/join style. Of course, the

generality of Hobbes has drawbacks, such as the

composability problem discussed in Section 3.1 that the

proposals above can easily avoid.

Other work has modified the parallel programming

model at the programming language level in order to

achieve data isolation and/or determinism. Examples

include X10 [11] and DPJ [7]. Hobbes, of course, is not

tied to a particular programming language.

6

7 Future Work

From a fundamental standpoint, we still need to

determine if the Hobbes model is the correct

representation of the CVS model. There were several

design choices made in the model described in Section

2 that could be revisited, such as the decision to limit

the working copy’s history.

Perhaps the area that needs most work before

Hobbes has a chance of becoming a practical model is

in the implementation. The model necessitates some

amount of data replication and movement that would

presumably lead to a host of implementation

challenges. However, we believe that many of those

challenges can be addressed by leveraging inherent

replication already present, though hidden from the

program, in modern hardware. For example, it may be

possible to utilize the data replication in hardware

caches to avoid much of the replication now delegated

to software. We may also investigate model changes

that may allow easier implementations, such as limiting

allowable module sizes.

Another area ripe for investigation is conflict

resolution policies. As stated above, we have currently

only used a last-writer-wins policy. Many others with

more interesting properties may exist, including thread

priority schemes or manual resolution through callback

functions.

8 Bibliography
1. Allen, M.D., Sridharan, S., and Sohi, G.S. Serialization sets: A

dynamic dependence-based parallel execution model. ACM
SIGPLAN Notices 44, 4 (2009), 85–96.

2. Aviram, A., Weng, S., Hu, S., and Ford, B. Efficient System-

Enforced Deterministic Parallelism. 9th USENIX Symposium on
Operating Systems Design and Implementation.

3. Bergan, T., Anderson, O., Devietti, J., Ceze, L., and Grossman,

D. CoreDet: a compiler and runtime system for deterministic
multithreaded execution. SIGPLAN Not. 45, 3 (2010), 53-64.

4. Berger, E.D., Yang, T., Liu, T., and Novark, G. Grace: safe

multithreaded programming for C/C++. Proceeding of the 24th
ACM SIGPLAN conference on Object oriented programming

systems languages and applications, (2009), 81–96.

5. Bienia, C. and Li, K. Parsec 2.0: A new benchmark suite for
chipmultiprocessors. MoBS, June, (2009).

6. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E.,

Randall, K.H., and Zhou, Y. Cilk: An efficient multithreaded
runtime system. ACM SigPlan Notices 30, 8 (1995), 216.

7. Bocchino Jr, R.L., Adve, V.S., Dig, D., et al. A type and effect

system for deterministic parallel Java. ACM SIGPLAN Notices
44, 10 (2009), 97–116.

8. Bressoud, T.C. and Schneider, F.B. Hypervisor-based Fault

Tolerance. SOSP '95: Proceedings of the fifteenth ACM
symposium on Operating Systems Principles, (1995).

9. Burckhardt, S., Baldassin, A., and Leijen, D. Concurrent

programming with revisions and isolation types. Object-
Oriented Programming, Systems, Languages, and Applications

(OOPSLA), (2010).

10. Ceze, L., Tuck, J., Cascaval, C., and Torrellas, J. Bulk
Disambiguation of Speculative Threads in Multiprocessors. .

11. Charles, P., Grothoff, C., Saraswat, V., et al. X10: an object-

oriented approach to non-uniform cluster computing.

Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and

applications, (2005), 538.

12. Devietti, J., Lucia, B., Ceze, L., and Oskin, M. DMP:
Determinisitc Shared Memory Multiprocessing. ASPLOS '09:

Proceeding of the 14th international conference on

Architectural support for programming languages and
operating systems, (2009), 85--96.

13. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M., and Chen,

P.M. ReVirt: Enabling Intrusion Analysis through Virtual-
Machine Logging and Replay. OSDI '02: Proceedings of the

5th symposium on Operating systems design and

implementation, (2002), 211-224.
14. Frigo, M., Halpern, P., Leiserson, C.E., and Lewin-Berlin, S.

Reducers and other Cilk++ hyperobjects. Proceedings of the

twenty-first annual symposium on Parallelism in algorithms
and architectures, (2009), 79–90.

15. Grune, D. Concurrent Versions System, A Method for

Independent Cooperation. .

16. Hammond, L., Carlstrom, B.D., Wong, V., Chen, M.,

Kozyrakis, C., and Olukotun, K. Transactional Coherence and

Consistency: Simplifying Parallel Hardware and Software. .
17. Hower, D., Dudnik, P., Hill, M.D., and Wood, D.A. Calvin:

Deterministic or Not? Free Will to Choose. The 17th IEEE

International Symposium on High Performance Computer
Architecture, (2011).

18. Hower, D.R. and Hill, M.D. Rerun: Exploiting Episodes for
Lightweight Race Recording. ISCA '08: Proceedings of the

35th International Symposium on Computer Architecture,

(2008), 265-276.
19. Montesinos, P., Ceze, L., and Torrellas, J. DeLorean: Recording

and Deterministically Replaying Shared-Memory

Multiprocessor Execution Efficiently. .
20. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., and Wood,

D.A. LogTM: Log-Based Transactional Memory. Twelfth IEEE

Symposium on High-Performance Computer Architecture,
(2006), 258-269.

21. Narayanasamy, S., Pereira, C., and Calder, B. Recording Shared

Memory Dependencies Using Strata. Proceedings of the 12th
international conference on Architectural support for

programming languages and operating systems, (2006), 229-

240.
22. Narayanasamy, S., Pokam, G., and Calder, B. BugNet:

Continuously Recording Program Execution for Deterministic

Replay Debugging. Proceedings of the 32nd annual
international symposium on Computer Architecture, (2005),

284-295.

23. Protić, J., Tomašević, M., Tomasevic, M., and Milutinović, V.
Distributed shared memory: concepts and systems. Wiley-IEEE

Computer Society Pr, 1998.

24. Saha, B., Adl-Tabatabai, A., Hudson, R.L., Minh, C.C., and
Hertzberg, B. McRT-STM: a High Performance Software

Transactional Memory System for a Multi-Core Runtime. .

25. Thomson, A. and Abadi, D.J. The Case for Determinism in
Database Systems. Proceedings of the VLDB Endowment,

(2010).

26. Warth, A. and Kay, A. Worlds: Controlling the scope of side

effects. VPRI Research Note RN-2008-001, Viewpoints

Research Institute, (2008).

27. Xu, M., Bodik, R., and Hill, M.D. A “Flight Data Recorder” for
Enabling Full-system Multiprocessor Deterministic Replay.

Proceedings of the 30th annual international symposium on

Computer architecture, (2003), 122-133.

