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Abstract 
We observe that many research proposals for 

enhanced multicore programmability share a common 

mechanism, namely, they limit how and when values in 

a shared memory program are updated. In this paper 

we present Hobbes, a generic mechanism to control 

shared memory updates that takes inspiration from 

software revision control systems like CVS. We show 

that two simple primitives, checkout and checkin, can 

be used to simplify programming and debugging, build 

deterministic software, and enable deterministic replay. 

Our preliminary evaluation indicates that the Hobbes 

programming model fits with many program’s existing 

data sharing patterns and has the potential to support 

new, more intuitive patterns. 

1 Introduction 

Many of the research proposals introduced since 

the dawn of the multicore era that aim to make shared 

memory programming easier share a common 

mechanism. All in some way limit how and when 

values in a shared memory program are updated, and 

effectively reduce the potential to unexpectedly share 

data (e.g., through a data race). Deterministic hardware 

systems like DMP [12] and Calvin [17] delay update 

propagation until deterministic events occur. Languages 

such as X10 [11] and DPJ  [7] constrain how memory 

from differing regions can communicate. Systems 

extensions like Grace [4] and Determinator [2] hide 

updated values from other threads until an explicit 

update event occurs. Many other examples exist in both 

hardware and software [1,10,16,20,23,24]. 

Given the above observation about the trends in 

multiprocessor programmability research, we aim to 

develop a generic framework for controlling how and 

when updates in a shared memory programming 

environment occur. We hope that if designed correctly, 

such a framework could be used to achieve the specific 

goals of all the proposals listed above using a single 

mechanism. Such a unified mechanism could 

simultaneously give hardware designers a single 

operation to optimize and software tools a single 

primitive to use.  

Rather than reinvent the wheel, we take inspiration 

from a concurrency management abstraction most 

programmers are already familiar with: software 

revision control systems. Development teams have been 

successfully using revision control systems for well 

over two decades, and the model has proven to be 

simple enough to understand yet powerful enough to 

enable complex interactions. And importantly, like the 

proposals for shared memory above, revision control 

systems operate by limiting how and when updates are 

published. 

In this paper we propose Hobbes, a software 

abstraction that takes inspiration from the CVS 

concurrency model [15]. Hobbes gives programmers 

the ability to checkout and checkin shared memory on a 

per-thread basis, much in the same way that revision 

control systems enable file checkout and checkin on a 

per-user basis.  

We show that the Hobbes model can be used as a 

foundation to develop mechanisms that achieve a 

variety of features previously proposed for 

multiprocessor systems. In particular, Hobbes can be 

used to constrain a multithreaded program’s 

interleaving, enable multithreaded deterministic replay, 

and allow for multithreaded deterministic execution. 

These are in addition to other benefits of the Hobbes 

model such as improved code readability and the ability 

to manage shared memory in new and intuitive ways. 

And importantly, Hobbes can achieve those goals with 

a single mechanism. 

We discuss Hobbes here largely without regard to 

implementation considerations, and focus specifically 

on the merits and limitations of the model. Our current 

and future work, some of which is discussed below, 

will focus on how the model can be efficiently 

implemented in both conventional and specialized 

hardware. 

We also discuss our experiences using an early 

prototype of Hobbes that can be used as a software 

library. We find  

 that existing programs written for shared memory 

systems are already written in a way compatible with 

the checkout/checkin operations, at the very least 

showing that the operations are reasonable 

abstractions; 
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 that the checkout/checkin mechanisms are sufficient 

to implement multiprocessor determinism strategies 

previously proposed;  

 the checkout/checkin mechanisms can be used by 

programmers to reason about multiprocessor 

communication; 

In the following sections we will first outline the 

details of our current working definition of the Hobbes 

model. Then we will discuss how the Hobbes model 

can be used in a variety of ways to help programmers 

deal with multiprocessor machines, including by 

controlling and/or eliminating nondeterminism. We will 

also briefly discuss our experiences with Hobbes-U, a 

working prototype. Finally, we will outline our plans to 

investigate the Hobbes model further.  

2 Hobbes Model 

The Hobbes framework is used by threads in an 

application to manage data sharing through memory. 

When using Hobbes, all communication through shared 

memory is explicit and is controlled through an 

interface described below. This is in contrast to 

conventional shared memory in which threads may 

communicate between any two memory references.  

Memory is managed by Hobbes through the use of 

four main abstractions borrowed from CVS, namely 

modules, working copies, repositories and 

checkout/checkin operations. Though all four 

abstractions share a likeness to their counterparts in 

CVS, several differences exist that make them unique 

to shared memory programming.  

2.1 Memory Repositories  
Every Hobbes application contains exactly one 

memory repository, which in turn contains zero or more 

modules. Threads communicate by pushing/pulling 

updates to/from modules contained in the repository. 

2.2 Modules 
Modules are abstractions use to group related 

addresses together in an indivisible unit. A module 

consists of one or more contiguous ranges of addresses 

in a process address space. Ranges cannot overlap and 

an address may belong to at most one module. Any 

address that is not defined by a module is considered 

private; threads are guaranteed that any update made to 

such an address will not be seen by other threads, 

similarly to an address in a forked process.  

Modules serve as the basis of sharing in Hobbes. In 

particular, threads communicate by passing different 

versions of modules between their working copies and 

the repository. 

 

2.3 Working Copies 
A working copy is a thread’s private representation 

of a module. Threads can be assured that any memory 

value in the working copy will not change 

spontaneously due to another thread’s update as they 

could in conventional shared memory. Likewise, a 

thread can modify locations in a working copy at will 

with the assurance that other threads in the same 

process will not prematurely see those updates. 

Working copies in Hobbes differ from those in 

CVS in at least one notable way. A Hobbes working 

copy cannot reflect any previous version in the history 

of a module as can a working copy in CVS. 

Programmers using CVS have access to different 

versions of project that they can use to track down 

bugs, revive dead code, and/or develop an 

understanding of the evolution of a project. While this 

model is useful for human programmers, threads in a 

shared memory program are not generally interested in 

finding and/or correcting work committed in the past, 

and so we chose to limit what Hobbes working copies 

can reflect. In particular, working copies in Hobbes 

always reflect the most recent version of a module at 

the time of the last checkout operation. In CVS 

terminology, this is analogous to a working copy that 

always points to the HEAD revision. 

Address Space Layouts 

The module/repository abstraction allows for many 

different address space layouts. Here, we discuss a few 

layouts that may be common in Hobbes applications and 

attempt to provide intuition on why the Hobbes model 

allows programmers to more effectively manage shared 

memory. 

One of the simplest layouts uses a single module that 

contains the entire heap. In this layout, threads can share 

information through values on the heap but cannot 

communicate through the stack. This layout has the 

benefit of matching up with common intuition on how 

programs communicate, but may be overly inclusive as 

typically not all addresses on the heap are intended to be 

shared. 

A modification of the entire-heap layout would be to use 

a single module strictly for shared heap allocations. This 

layout would require a modified memory allocator 

capable of distinguishing between a private or shared 

allocation (e.g., with pmalloc and smalloc). Using a 

separate module for private allocations could help 

prevent heisenbugs that occur from inadvertent sharing in 

private memory regions and, depending on 

implementation details, could result in performance 

benefits since the Hobbes system has fewer memory 

locations to track. 

Other layouts could take advantage of multiple modules 

within the same application. For example, an application 

could use one module for the shared data of each subtask 

in an application.  
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2.4 Checkout/Checkin 
In the Hobbes model, threads can only 

communicate through memory by moving data between 

their respective working copies and the encompassing 

repository. Two operations, checkout and checkin, are 

used for this purpose. A checkout operation atomically 

pulls the most recent version of a module into a thread’s 

working copy. Similarly, a checkin operation 

atomically pushes any changes made in a working copy 

back to the repository.  

Checkout and checkin operations are totally 

ordered over the course of execution. That order is used 

to determine what version of a module at the repository 

a thread should see. Upon a checkout, a thread will see 

all updates from checkins that occurred before the 

checkout and none that occurred after.  

2.4.1 Patches 

The use of checkout and checkin operations create 

logical patches during execution. A patch consists of all 

updates made to a working copy since the last checkout. 

The checkin operation applies the current patch to the 

repository. Because corresponding checkout and 

checkin operations do not have to be consecutive in the 

total order of operations, patches are partially ordered 

during an execution. As a result, it is possible for a 

conflict to occur between concurrent patches. 

2.4.2 Conflicts and Merging 

A conflict occurs when two concurrent patches 

have overlapping updates. When a conflict occurs, it 

must somehow be resolved, and in Hobbes many 

possibilities exist. Below we will discuss two of these 

possibilities, though many more could be applied. We 

envision that future Hobbes systems may even allow 

programs to dynamically choose a conflict resolution 

policy.  

One of the simplest, yet still useful, policies is a 

last-writer-wins scheme. Under this policy, conflicting 

updates blindly clobber old values as determined by the 

checkin order. For example, if two concurrent patches 

both update an address A, only the value from the patch 

with the oldest checkin time will survive in the 

repository. In our experience using Hobbes so far, we 

find that under most situations the clobbered update is 

either tolerable (accounted for in the algorithm’s 

design) or is an obvious indication of a bug. In the later 

case, it may be beneficial for a Hobbes system to 

provide an error notification, e.g., via an exception, 

when a conflict occurs.  

Another possibility for resolving conflicts is to use 

a user-controlled resolution function, similar to a 

manual merge in CVS. Here, the user (program) can 

dynamically choose what to do when a conflict occurs, 

presumably through a callback function. This resolution 

policy is particularly interesting in its possibility to 

enable, for example, lock-free data structures through 

undo actions. Unfortunately, we have not yet evaluated 

this policy though hold high hopes for its utility. 

3 Uses 

Below we will discuss how a Hobbes framework 

can be used to achieve a variety of research goals, 

including deterministic execution, easier debugging, 

and support for hard to implement algorithms. Other 

possibilities may exist, such as supporting a software 

transactional memory implementation, but are not 

discussed here. 

3.1 Code Annotation 
Because the checkout/checkin mechanisms 

explicitly identify when threads communicate, they can 

serve as visual cues in the source code that state a 

programmer’s intention. This can be especially helpful 

in large projects where more than one programmer 

works on the same software module. Unlike disciplined 

software engineering practices that have attempted to 

address this very problem (e.g., shared variable naming 

conventions), Hobbes forces, rather than suggests, the 

source code to be self-documenting, potentially leading 

to more readable and usable source code even in the 

face of shaky engineering practices. 

Additionally, because of the self-documenting 

features of Hobbes, multithreaded debugging may be 

simplified. In particular, when debugging an application 

a programmer can be assured that if she observes a bug 

in a region of code that does not contain a checkout or 

checkin, that that bug is due to a local (i.e., single 

threaded) error.  

One major obstacle to Hobbes’ use as a code 

annotator is software composability. When 

checkout/checkin operations are hidden in a function 

call programmers may not be aware that 

communication is occurring. Hobbes could benefit from 

solutions to similar composability problems previously 

proposed, such as Java’s insistence on listing throwable 

exceptions at a function’s declaration.  

3.2 Interleave Constrained Execution 
A program that uses Hobbes can only communicate 

at checkout/checkin operations. This is in contrast to 

conventional shared memory programs that can 

potentially communicate between any two memory 

accesses. The reduced possibility for communication 

results in exponentially fewer potential thread 

interleavings, and consequently a program that is easier 

to develop, test, verify, and maintain. Once a program 

is verified using Hobbes, developers can have a higher 

confidence that released software will be free of 
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concurrency errors, potentially saving millions of 

dollars a year in development and support costs. 

3.3 Deterministic Replay 
While simply using Hobbes goes a long way 

towards making multithreaded executions more 

predictable, the resulting executions can still be 

nondeterministic. Sometimes this nondeterminism is 

even intentional, e.g. when designing a load balancing 

work queue [6]. However, even when nondeterminism 

is desired for algorithmic purposes there are times when 

replicating a previous interleaving can be helpful. 

Deterministic replay allows debuggers to hone in on 

rarely occurring bugs [27], enables software replication 

of multithreaded programs [8], gives security analysts 

insights into obscure attacks [13], and can even be 

useful to for application-specific tasks such as database 

queries [25]. Unlike many existing proposals to enable 

multithreaded deterministic replay [18,19,21,22,27], 

Hobbes can be used to build a replay system without 

requiring replay-specific hardware (though still taking 

advantage of any hardware acceleration present for 

Hobbes), as described below.  

Recording the memory interleaving order, which is 

a key component of any multiprocessor deterministic 

replay mechanism, in Hobbes is nearly trivial. It 

requires only that the order of checkout/checkin 

operations are recorded. Replay is only slightly more 

complicated, and consists of a system capable of 

enforcing a predetermined checkout/checkin order (and, 

of course, a mechanism for replaying inputs). A 

Hobbes-based deterministic replay mechanism would 

be lightweight enough that it could be used online in 

production systems to collect detailed bug reports on 

concurrency errors or to forward ordering information 

to replica processes for fault tolerance [8].  

3.4 Deterministic Execution 
While deterministic replay can be helpful, in many 

cases it may not be needed. Many parallel algorithms 

can efficiently be made deterministic with a Hobbes 

system, making the need to record a thread interleaving 

unnecessary. Eliminating the recording step can reduce 

bandwidth requirements in a software replication 

scheme or increase testing confidence in multithreaded 

programs to be on-par with that of single-threaded 

applications. 

At the very least, Hobbes can be used as a 

mechanism to implement deterministic execution in a 

manner similar to current state-of-the-art [3,12,17]. 

Most current systems achieve determinism by 

stratifying (or quantizing) a multithreaded execution. 

After partitioning execution into a series of global 

strata, these systems ensure that threads communicate 

only at strata boundaries and do so in a deterministic 

order. Hobbes can be used to implement these systems 

by using an ordered barrier operation that, in addition to 

performing like a conventional barrier, also ensures that 

threads entering/leaving the barrier logically 

checkin/checkout in a deterministic order.  

Programmers could manually insert calls to the 

ordered barrier to make their application deterministic. 

Alternatively, it is conceivable that a special runtime 

system could be constructed that transparently inserts 

ordered barriers during execution, making existing 

programs deterministic without modification. 

In addition to being a mechanism for implementing 

the current state of the art in deterministic execution, 

Hobbes also has the potential to improve the state of the 

art in at least two ways. Both approaches attempt to 

tackle the problem of load imbalance that is one of the 

major performance limiters in strata-based systems 

[3,12,17].  

First, Hobbes exposes the mechanism for achieving 

determinism (i.e., the ordered barrier) to the 

programmer. This presents the opportunity for high-

level information about a program to be taken into 

consideration when creating strata and may prevent 

situations where strata are created at inopportune times, 

such as during periods where threads are not 

communicating. Current systems that create strata 

without any high level program information are not able 

to avoid these performance pitfalls. 

Second, Hobbes allows programmers to use more 

precise instruments than barriers for controlling 

determinism. Generally, as long as the order of 

checkout/checkin operations is controlled in a 

repeatable way, then a deterministic execution results. 

This gives programmers the opportunity to encode a 

deterministic schedule that corresponds to the actual 

communication patterns of an application, which may 

not follow the barrier model. This gives programmers 

the flexibility to design complex deterministic programs 

without needlessly sacrificing performance due to a 

communication pattern mismatch. 

4 Hobbes-U 

Hobbes-U is the first prototype of a Hobbes model 

implementation. It is implemented entirely as a 

userspace library for C and C++. Hobbes-U is not 

particularly efficient or fast, but serves a key purpose 

by allowing software development with the Hobbes 

model to proceed. Hobbes-U also allows us to collect 

key statistics on program usage that will motivate future 

improvements in a Hobbes implementation. Hobbes-U 

was designed for functionality, not efficiency, and has a 

steep performance cost. 
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Table 1 – Hobbes-U Interface 

int hobbes_prepare() 

void hobbes_finish() 

hobbest_module_t create_module() 

void* smalloc(size_t len, hobbes_module_t m) 

int mcheckin(hobbes_module_t m) 

int mcheckout(hobbes_module_t m) 

void ordered_barrier(pthread_barrier_t b, 

hobbes_module_t m) 

 

Threads in Hobbes-U manage memory using the 

interface shown in Table 1. Before using any Hobbes 

abstractions, a program must first make a call to 

hobbes_prepare(), which initializes hidden 

library state. Users can manage modules through the 

combined use of create_module() and 

smalloc(…). create_module() initializes a new, 

empty and module in a thread’s working copy and 

return a handle to it. Subsequent calls to 

smalloc(..) that use that handle add memory 

regions to the module. mcheckout(…) and 

mcheckin(…) are used to pull or push, respectively 

modules from a working copy to the repository. Finally, 

the Hobbes-U interface also includes a special ordered 

barrier synchronization operation so that deterministic 

programs can be written. 

Additionally, Hobbes-U serves as a drop-in 

replacement for the pthread library, enabling existing 

pthread software to use Hobbes memory management 

without substantial (if any) modification. The Hobbes 

implementation of pthread library calls includes 

implicit checkout/checkin operations when 

communication is expected (e.g., at barrier_wait).  

Hobbes-U utilizes existing virtual memory 

mechanisms and performs all operations under the hood 

at the page level. This is transparent to the user, 

however, who can still create and operate on modules 

of arbitrary size. Many techniques used by Hobbes-U 

have been borrowed from other systems that manage 

shared memory through paging mechanisms, such as 

Grace, Determinator, and various software DSM 

systems [23]. For this reason and space considerations 

we omit further details of the Hobbes-U design. 

5 Preliminary Evaluation 

Our preliminary evaluation of Hobbes-U is focused 

on the usability of the Hobbes model, and we purposely 

omit any performance evaluation at this time. 

Specifically, our evaluation seeks to determine if the 

Hobbes model a) is general enough to support a variety 

of programs, b) matches with programmer’s existing 

intuition on how to manage share memory, and c) 

enables new, more organized and/or modular ways to 

manage shared memory. 

To answer these questions, we used the Hobbes-U 

prototype to develop a suite of applications that include 

workloads from the popular PARSEC benchmark suite 

[5] as well as custom from-scratch implementations of 

well known algorithms like ocean and barnes-hut. We 

modified the applications from PARSEC as little as 

possible, and use them to test Hobbes’ compatibility 

with existing techniques for managing shared memory. 

Our custom workloads take a different approach and are 

used to gain experience writing programs specifically 

for the Hobbes model. 

5.1 Qualitative Findings 
Of the six PARSEC workloads we tested, three of 

them worked by simply linking to Hobbes-U rather than 

pthreads. Of the remaining, two workloads only 

required small modifications, usually to eliminate any 

data sharing on the stack, which our Hobbes-U 

implementation does not support. We only needed to 

insert an explicit checkout/checkin in one instance in 

order to correctly synchronize a flag variable that was 

not protected with pthread library calls.  

These findings indicate that the Hobbes model at 

the very least is compatible with current memory shared 

memory management strategies. Combined with the 

extra benefits like easier debugging and determinism, 

we believe that Hobbes has potential even if the 

checkout/checkin operations aren’t used in “new” ways. 

6 Related Work 

Hobbes has many similarities to recently proposed 

work on parallel programming models. In general, 

Hobbes is distinguished from these prior proposals by 

1) the flexibility the Hobbes model allows, and 2) 

Hobbes’ independence from any specific programming 

language.  

Several recent programming models for 

determinism, including Revsions [9], Worlds [26], Cilk 

Hyperobjects [14], Determinator [2], and Grace [4], use 

revision control systems for inspiration. Each of these 

proposals uses a fork/join parallelism model where 

threads can only communicate directly with their 

parent. The Hobbes model, on the other hand, is not 

limited strictly to a fork/join style. Of course, the 

generality of Hobbes has drawbacks, such as the 

composability problem discussed in Section 3.1 that the 

proposals above can easily avoid. 

Other work has modified the parallel programming 

model at the programming language level in order to 

achieve data isolation and/or determinism. Examples 

include X10 [11] and DPJ [7]. Hobbes, of course, is not 

tied to a particular programming language.  
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7 Future Work 

From a fundamental standpoint, we still need to 

determine if the Hobbes model is the correct 

representation of the CVS model. There were several 

design choices made in the model described in Section 

2 that could be revisited, such as the decision to limit 

the working copy’s history. 

Perhaps the area that needs most work before 

Hobbes has a chance of becoming a practical model is 

in the implementation. The model necessitates some 

amount of data replication and movement that would 

presumably lead to a host of implementation 

challenges. However, we believe that many of those 

challenges can be addressed by leveraging inherent 

replication already present, though hidden from the 

program, in modern hardware. For example, it may be 

possible to utilize the data replication in hardware 

caches to avoid much of the replication now delegated 

to software. We may also investigate model changes 

that may allow easier implementations, such as limiting 

allowable module sizes. 

Another area ripe for investigation is conflict 

resolution policies. As stated above, we have currently 

only used a last-writer-wins policy. Many others with 

more interesting properties may exist, including thread 

priority schemes or manual resolution through callback 

functions. 
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